OXIDATION AND REDUCTION

OXIDATION OF 9-FLUORENOL
DID YOU KNOW?

Reduction-oxidation reactions, or redox reactions, have enormous importance in biological systems. For example, your cells oxidize glucose to CO$_2$ providing much of the energy you use!

Oxidation reactions are particularly useful tools for synthetic chemists. They functionalize otherwise unreactive positions on molecules adding new chemical possibilities to explore!

THE REACTION

\[\text{OH} \quad \text{NaOCl} \quad \text{CH}_3\text{COOH} \quad \text{O} \]

Note: sodium hypochlorite and acetic acid form hypochlorous acid - the key oxidant in this rxn.

THE MECHANISM

Lone pair electrons attack partial positive Cl in hypochlorous acid and hydroxide leaves. Then hydroxide electrons attack proton forming H$_2$O.

Carbon oxygen double bond forms; chloride ion leaves.

Water acts as a base attacking acidic proton.

Lone pair electrons attack Cl. Hydroxide leaves while simultaneously abstracting proton to form H$_2$O.
9-Fluorenol 1H NMR
(60 MHz, 2 scan, 22 seconds)

1H NMR spectrum of 9-fluorenol in DMSO shows a group of signals at 7.2 - 8.0 ppm that arises from the aromatic protons. The -CH proton resonates at 5.5 ppm and the -OH proton resonates at 4.7 ppm.

Fluorenone 1H NMR
(60 MHz, 2 scan, 22 seconds)

Comparing fluorenone with 9-fluorenol, we see two fewer protons as a result of oxidation. Consequently, the -OH and -CH signals do not appear in the 1H NMR spectrum of fluorenone. The signals at 7.2 - 7.8 ppm arise from the aromatic protons.
REINFORCE KEY CONCEPTS

+ electronegativity
+ oxidation state
+ oxidizing agent

PRACTICE THE MECHANISM

\[
\text{Reaction: }
\text{NaOCl}\rightarrow\text{CH}_3\text{COOH}
\]

Note: sodium hypochlorite and acetic acid form hypochlorous acid - the key oxidant in this rxn.